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Phase transitions in periodically driven macroscopic systems
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We study the large-time behavior of a class of periodically driven macroscopic systems. We find, for a
certain range of the parameters of either the system or the driving fields, the time-averaged asymptotic behavior
effectively is that of certain other equilibrium systems. We then illustrate with a few examples how the
conventional knowledge of the equilibrium systems can be made use of in choosing the driving fields to
engineer new phases and to induce new phase transitions.
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[. INTRODUCTION absence of driving, would relax to equilibrium. The relevant
degrees are described by a field and the equilibrium proper-
With enduring interest, studies have been pursued to urties are characterized by an energy functional of the field.
derstand systems with many degrees of freedom at, near, afithese systems may or may not have a critical point when in
far away from equilibrium. Systems at equilibrium are stud-equilibrium but could exhibit a critical behavior when the
ied within the well-established Boltzmann-Gibbs framework,driving fields are switched on. How do these macroscopic
while those near and far from equilibrium lack such a frame-systems respond to periodically driven fields? How do we
work and are usually described by stochastic dynamicatlescribe the phases of the driven system? What is the depen-
equations. The stochastic equations that describe the dynamence of the critical points, if any, on the parameters of the
ics near equilibrium need to ensure that the system relaxes tiriving fields? Can driving change the nature of the phase
equilibrium and hence are less difficult to construct thantransitions? Can it lead to new phases?
when the system is far away from equilibrium. However, this  The layout of the paper is as follows. In the next section,
condition that the asymptotic solution is the equilibrium dis-we define a class of stochastic models to describe the rel-
tribution does not provide a unique stochastic equation. Irevant fields of periodically driven systems. In Sec. Ill, we
fact, for a given equilibrium system infinitely many such develop a perturbative scheme to solve the Fokker-Planck
equations near equilibrium can be provided that would leacgquation that describes the systems of our interest and ex-
to the same static propertig€s]. This naturally motivates the plicitly find their asymptotic behavior to first order. In Sec.
study of various stochastic models. IV, we illustrate with examples some of the effects of driving
We know that a closed system, characterized by the®n phases and phase transitions.
HamiltonianH, when exposed to the environment for a long
time, will equilibriate and be described by the Boltzmann
distribution exg—BH). If this system is also subjected to an
external periodic force then what is its large-time behavior?
The absence of an established framework to find this In this section, we will define a class of periodically
asymptotic behavior and the fact that the equilibrium behavedriven stochastic systems. We will assume the slowly relax-
ior is describable by the asymptotic solution of certain stoing modes of the system in the absence of the periodic forces
chastic equations, makes it essential to study various periodie be the relevant degrees of freedom and then model the
cally driven stochastic systems. It is also essential as some dfynamics of these variables by modifying the stochastic
these systems show interesting behavior and some of theaquations of these modes in the presence of the periodic
furnish useful applications. Stochastic resonaiigg and  forces.
magnetic hysteresi8] are some of the well known phenom-  Let us first recollect how the dynamics near equilibrium is
ena that are exhibited by certain periodically driven stochaselescribed in the absence of driving. In this case the variables
tic systems. of interest, those that relax very slowly, are the order param-
A large number of stochastic processes have been studieder and the conserved quantities. This is a small set of vari-
for many decades noy4]. Studies in critical dynamics have ables which are some functions of the original degrees of
been actively pursuefb] after renormalization group tech- freedom. In principle, the dynamics of these relevant vari-
niques were successfully applied to equilibrium syst¢éls ables can be obtained from the equations of motion of the
Many driven diffusive models were studi¢d] and the criti-  original degrees, by integrating out the unwanted variables.

Il. STOCHASTIC MODELS FOR PERIODICALLY DRIVEN
SYSTEMS

cal behavior of some of them were analyzed [B@®)]. Peri-  In practice, these dynamical equations for the relevant de-
odically driven stochastic particle systems were extensivelyrees are not thus established as they are not usually deriv-
studied in the context of stochastic resonajjewhile simi-  able due to the large number of unwanted variables involved.
lar studies on fields were relatively few. Hence these equations are based on certain guiding prin-

The issues that we address in this paper are related toaples[10]. (i) Foregoing a large number of unwanted vari-
class of periodically driven macroscopic systems that, in thables renders a stochastic evolution to the relevant giigs.
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These stochastic dynamical equations should be such that the The modified TDLG theory that describes the system
large-time distribution gives the right static thermodynamicwhen subjected to driving is then given by the following
properties. This large-time distribution is the distribution ei- stochastic equation:

ther obtained by integrating out the irrelevant variables from 5H(0)
the canonical equilibrium distribution or found on phenom- "~ - _ ¢

enological grounds, e.g., Landau-Ginzbykg>) theory near mat2‘p(x’t) - Fm@(x’t) * Fek, ) + 7(x.D),
critical point. Finally, the stochastic equations thus estab-

dp(x,1)
lished could explain the dynamic properties of the relevant 2

variables near equilibrium. where F(¢(x),t) is the driving field that is periodic in time

There exist many different families of stochastic equa-with period T=27/€. The general form of this field is
tions that give the same static properties for the relevant

degrees. One of these is the following Langevin equation, the ~
time-dependent Landau-Ginzbuf@DLG) theory that de-  F(@(X),t) = 2, [Fa(@(X))cognQt) + G,(¢(x))sin(nQt)],
scribes the dynamics near equilibrium n=1
©)
J SH(e) whereF, andG, are arbitrary local functionals af(x). This
Fa@(X,t) =- ox) " (Xt)‘* 7(x1), (1) term could be thought of as a result of making the coupling
PX)— @,

constants ir{(¢) time dependent and periodic. We will take
m=1 so that the expressions look simple and to regaimthe
dependence back replace—t/\m, I'—=I'/ym, and Q
—mQ. The distribution of the noise field is Gaussian as
specified earlier.

The above dynamical equation for(@+ 1)-dimensional
stochastic field describes periodically driven Brownian par-
. - L . . ticle. These Brownian particles exhibit a variety of interest-
equation then the probability distribution of Fhls solution ing asymptotic behavior depending on the driving forces
Ple,0)=IL(&(¢(X) ~¢,(x,1))),, evolves according to the 19} The particles when driven could congregate around
Fokker-PlanckFP) equationd;P=LP that is obtained from e than one point even though when in equilibrium they
Eq. (1) and the Gaussian distribution efx,t). The formal \y5y|d have congregated around a single point. Particles with
solution of this FP equation i®(¢,t)=exp(L)P(¢,t=0),  different masses respond to driving differently and thus when
where P(¢,t=0) is the initial distribution. The asymptotic they are mixed and driven would cluster around different
distributionP..(¢,t) =lim_...P(¢,1) is the right eigenfunction  points.
of the £ operator with zero eigenvalue. This asymptotic The phase space probability distribution is defined as
probability distribution is the LG measurBeq@) ~exn  P(e,m,t)=(I18(¢(X) = @,(X,1)) 8(m(X) = de,(X,1))),, where
~H(¢)), provided (i) the eigenvalues ofz are negative ¢ (x,t) is the solution of Eq(2) at timet for a particular
semidefinite,(ii) there exists a unique normalizable eigen-history of{7(x,t)} over a timet and(: - -)7] is the average over
function corresponding to zero eigenvalue in the connecteghe noise distribution. This distribution satisfies the normal-
space of functions to which the initial distribution belongs t0,ization conditionfD[¢, #]P(¢,r,t)=1. The time evolution

and (i) the initial distribution is not orthogonal to this ¢ P(p,,t) is described by the FP equation
eigenfunction.

The presence of driving fields on the system will alter 9
both its kinematics and dynamics. Assumptions about kine- EP(% mt) = LIOP(e,m1), (4)
matics follow. (i) The set of variables that were relevant in
the absence of driving for the dynamics near equilibriumyhere
continue to remain relevant upon introducing drivir(@,)
Some minimal set of additional variables might become rel- S 6
evant too. We will consider a velocity fielet(x) along with L(t) :f {_ 5_"077_ g(
the order parameter field(x) to be relevant. The dynamical *
variables of the system are then specifieddiy,t) and its
time derivative d,¢(x,t). Assumptions about the dynamics
are as follows(i) The Langevin equation, that describes dy-
namics near equilibrium in the absence of driving, getsThe FP operatoLep is defined as the time-independent part
modified by adding terms related to the periodically drivenof the L(t) operator, both of which are assumed to be suit-
fields and by adding a second-order time-derivate ternably regularized. To keep the notation compast,e(x) and
(?tz(p(X,t) whose effect is significant when the driving fre- ==m(x) are used in the above equation. The solution of this
guency is high(ii) The periodic driving does not change the equation is not known in general and our aim is to find the
properties of the noise field for any frequency of the drivingasymptotic solution for some range of parameters of the sys-
fields. tem and driving fields.

whereg(x,t) is a(d+ 1)-dimensional stochastic field that re-
laxes to the order parametefx) of the system an@(¢) is
the LG free-energy functionaby(x,t) is a Gaussian random
field with (n(x,1)),=0 and (n(x,t)n(x’,t")),=2dx
-x")o(t-t'). If ¢,(x,t) is the solution of the above Langevin

-r —ﬁ+}' >+Fi}
(PR ALY R

o
:£FP_f gf(@t)- ©)
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The asymptotic distribution of the above FP equation is anade to behave as a scalaP(e,,t)— P(d,I1,7)

periodic function with period, if the real part of the eigen- —p(, 7 t). The functional derivatives will then transform as
values ofd,— L(t) are positive semidefinite. In brief, the ar-

gument for the periodicity goes as follows. The solution of o 1)
the FP equation is the right eigenfunction of the operator sm(x) = STI(x)’
- L(t) corresponding to the zero eigenvalue. 4ft)=L(t
+T) then 4-L(t) commutes with the discrete time- s
translation operator expsd,). The solution can then be ex- f D(x ,y)( J d.M(y,2) ) (7)
panded in terms of the common right eigenfunctions of these Sp(x)  Jy so(y)  J, dll(2)

two operators. Let the eigenfunctions @f-L(t) and
exp(Tad,) with eigenvalues O and ekpT), respectively, be
the Floquet-type functions egpt)p,,(t), wherep,,(t) is a pe- J 0 S S
riodic function with periodT. Subgtituting these eigenfunc- 5~ E_‘f aif(x;‘b'T)an—()() ‘J ‘975()(?‘1’*7)?’

. . . . X X @(x)
tions in FP equation givelsy,— L(t)]p,(t)=-up,(t). Hence,

if the real part of the eigenvalues &f—L(t) are positive (8
definite then in the limitt—c the only eigenfunction that

and the time derivative as

survives ispy(t), thus making the asymptotic distribution pe- where
riodic. S o(2)
When the coupling constant§} of the driving field M(x,y) = Wf(y P, 7), fD(xy Sy )_5( -2).
F(e,t) are small compared to the coupling constdigisof
H(¢p) then the FP equation can be solved perturbativigjn (9)

providted Zve kn_lc_J;v the right a}nd Iff.ft eigenfunctions of”the FTSubstituting the above new variables in E4). we obtain the

operator Lep. ese eigenfunctions are generically no

known though the eigenfunctions of the FP operator WhICHcOIIOWIng transformed FP equation:

includes only the free part df((¢) are obtainable. Hence, P P P

the eigenfunctions ofp can be determined perturbatively — = f {— — - —(TI+fy(®+¢&+AFE7)

in {g} and in turn the solution of the FP equation in the 97 Jx oD oIl

double series expansion {g} and{g}. We will now further P

to find the asymptotic behavior of the FP equation wign + F?]W'J H(X)l{5(x y) = DY) o
Xy

are not necessarily small compared{tg. 5(1)( )
Il ASYMPTOTIC DISTRIBUTION OF THE FP +D(x, y)f a,M(y,2) STl :|~ J {(ﬁ§§+ I'o €
EQUATION @ X
In this section, we will first transform the FP equation to - A (@ 7-)) ]E, (10)
enable us to have a non-perturbative solutiofighbut per- Sll(x)

turbative in a parameter that involves bdti} and Q%+T2.
We then explicitly evaluate the asymptotic distribution to
first order in this parameter and more specifically the time-
averaged asymptotic correlation functions. We find that thes
correlation functions can be expressed as equilibrium corre- PE+Ta.6- F(d,9)=0 (12)
lation functions with an effective LG energy functional. T ! ' '

where fy(e(X)=-6H/5p(x) and AF(&,7)=F(D+¢,7)
- F (P, 7). We now choosé(x; P, 7) to be the solution of the
Eollowmg equation:

_ whose explicit form is
A. Formal solution
We will make a change of variables and transform the FP
equation such that the time-dependent part of the trans- X @, 1) = E 292 + FZ{(Fn(Cb(X))
formed FP operator is small though the time-dependent part
of the original FP equation is not. The variables =,t} are
changed td®, 11, 7} by the following nonlinear transforma-

tion: -
(P(X) — CI)(X) + §(X,(I), 7_), - EFn(q)(X)))Sln(nQT)} . (12)

(%) = T1(X) + 9,60, D, 7, The reason for this specific choice f6is that not only does

it make the last term on the right-hand side of E) zero
but also makes th@ime)r-dependent part of the modified FP
operator to be 0D(¢). Thus if £ is small then this modified
where the explicit form of(x;®,7) will be specified later. equation will yield a perturbative solution. Upon substituting
Under this transformation the probability distribution is ¢ from Eq.(12) in Eq. (10) we finally get

+ %Gn@(x)))cos(nm) v (Gn@(x))

t=r, (6)
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where the integration measuf¥ m, ¢]=I1,{dm(x)d¢(x)] and

_P(‘I’ I1,7) =[£ + ALTP(®,IT,7), (13 the Jacobian of the transformationJ ®]=1I1,[1
_ _ _ +9&(x, P(x),t)/ 9P (x)]. The first-order asymptotic distribu-
where L is the following static FP operator: tion, obtained from Eq(16), is Ew:Q(l)+(aT_L)—1A£Q(O),
S S where Q© and Q) are the solutions of the equatiofiQ
L= f - 5“ - E(‘ T+ f5(® + &) + AF(£,7) =0 to O(1) and O(¢), respectively. Substituting., in Eq.
* 5 (17) and averaging over a period gives
+ F—2:| s (14) -
oll D[, @le(x)(Xp) - -+ Pl g, m,t]

andA/L is the periodic(time) --dependent operator
= f DL DI (x)P(xp) - - QV(D,IT) + O(£),

(18

since the time average of bothand[(d,-£)*ALQ©] are
{6(x-y) = D(x, y)}5¢( ) zero. From Eq(14), in which f,(®+¢) and AF(¢,7) are
expanded td(¢), we get

5 N
AT f {' @+ - T(@+ 8+ AF(ED

—A]:(f,T)):| +f TT(x)
Xy

+ D(X, y)f a,M(y,2) (15)

1 1

SII( )1 Q(®,IT) = ﬁexp(— 5 f I1%(x) = H(®) - AH((D)),
X

where the overbars indicate an average over a time period.

The perturbative asymptotic solution can be formally (19)
written as whereZ® is the normalization constant add(®) satisfies
the condition

Po(@,11,7) = Q(®,IT) + - iﬁAEPx(qn,n,T), (16) 5
7 FAH(CD) =-&x;D, t)F]-'(CD(x) B, (20
where Q(d,I1) is the right eigenfunction ofZ with zero ) (x)

eigenvalue. If£ has a unique eigenfunction corresponding toSubstitutingé and F from Egs.(12) and (3) in the above
zero eigenvalue, and the real part of the nonzero eigenvaluegjuation we geAH=AH,+AH,, where

do not vanish, andP., is periodic in time, then it follows 1
from Eq.(13) thatALP,, has no overlap with the eigenfunc- AH, (D) = E 5 2f [FA(d(x)) + G2(D(¥)],
tion of 9,— L corresponding to zero eigenvalue. Thus, though 4,5 n7Q7+T

d,— L is not invertible, its inverse action on the space or-

thogonal to its eigenfunction with zero eigenvalue is well 2
defined. AHH(P) =

1 (P02
B. Effective theory (21

In this subsection, we will obtain the effective energy WIFy(P(x)),Gn(P(x))] is defined by the indefinite integral
functional to O(§) by averaging the asymptotic correlation W F(a),G(a)]=[da[G(a)F' () -F(a)G'(a)]. After inte-
functions over a time period. The observables will be relatedyrating outll in Eq. (18), we finally get
to the time-averaged correlation functions if the time of ob- .
servation is comparable to the time period of the driving lim{(@(x1, D@0 t) -+ )y
fields. In other words, we are assuming that the driving fields

r
+T1?)(2nQ) J . WIFH(D(X)),Gr(P(x))].

oscillate rapidly compared to the time scale of the measure- 21 _

L rapidy comp mes - == f Dle(]p(x)glx) - eHeil®),  (22)
The equal-time correlation functions of the stochastic

field transform under the change of variables as whereZ= Do exp(—Heit) and Heif(@) =H(¢)+AH(¢). The

effective energy functional for Al-component order param-
eter fieldp={¢,} is a straightforward generalization of Egs.
(p(xp,De(xp,t) ++), = f Dl @le(X) @(X2) - -+ Ple, 1) (20) and (21). In this caseAH, which satisfies Eq20) for
each component, exists only if the components of the driving
_ : field F2 andGa satisfy the conditiongF2/ dg,=dF>/ de, and
f DIILP[PKD(xy) + &(xq; D, 1)} IGR = IG .
—~ Note that We have neglect@{ %) terms in the expansion
X{D(xp) + &lxg; @, 1)} -+ P(D,ILY), of the £ and AL operators becausgis assumed to be small.
(17) The condition for the smallness gfand the criteria for the
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validity of O(¢) approximation are both obtained by compar- Fle(x) = Zap(x)cod Ot), (25)

ing the neglected terms with those that are retained in these ) ] ) ) ]
operators. For instance, = Zj¢(x)cogQt) and the coef- then this sys.tem will ge_t descrlbed by the following effective
ficient of ¢* term in H(¢) is A then £ is small if energy functional that is obtained using Eg1)
>0%/(Q?+I'?). A self-consistent criteria can also be obtained

by comparing the expectation values of the neglected and the Herl o] = j (90(X))? + 23e¢"(X) + Ao (), (26)
retained terms using/.s. In some cases the higher powers of X

& contribute only irrelevant terms télo and hence can be \yhere a,=A(T-T)+32/(Q2+T?). Since this effective en-
neglected while determining universal properties, indepengrgy functional differs from the original functional only in
dent of¢ being small. For instance, F=Ge*(x)codQt) and  the coefficient of thep? term one can read off the critical
H is a¢* theory in four dimensions, then tH@&(é) term in  temperatures, and the behavior of the time-averaged mag-

H itself is an irrelevants® field and the higher-order terms netization(e) below 6, of the driven system. We get
contain fields that are more irrelevant. ,

The effective energy function&l.; can be interpreted as a

follows. The asymptotic distribution contains both statistical Oc=Te~ AQ2+T?)’

fluctuations® and the dynamical fluctuatior® ,t) that are

periodic in time. In Eq(20), if we substituteF in terms of¢ _ A

by using Eq.(11) and then integrate by parts, we get ()= X(GC_T)' (27

S 9 1—0y J Hence, the driving field acting on this system tends to de-
gﬁH(‘D) = 55(3@) *lag ¢ (23)  stroy the symmetric phase as it reduces both the critical tem-
perature and the magnetization at a given temperature.

Thus, by averaging over the time period we have eliminated _ N
the dynamical fluctuations and provided an effective descrip- B. Changing the nature of transition
tion to the system in terms of the statistical fluctuations that The nature of phase transition can also be changed by
are governed by a modified energy functiordky=H  applying driving fields. Consider the LG functional as given
+AH. in the previous example, E¢R4), but with a different driv-

ing force

IV. ILLUSTRATIVE EXAMPLES Fo(x) = 2(@g(x) —E¢3(X))COS(QI), (28)

We have seen that the large-time behavior of periodicallyyng also assume the dimension of space3 whereg® term

driven stochastic systems, averaged over a period, can Bg jrrelevant. The effective energy functional will then be-
described by an effective LG functional of equilibrium sys- come

tems. We can now make use of the knowledge about these

equilibrium systems to induce new phases and phase transi- _ 5 2 4 6

tions in various systems by subjecting them to time- Herl ¢] = X(‘*P(X)) + 30 “(X) + N (X) + beg(X)
dependent periodic fields. We illustrate some of the effects

due to these driving fields with a few examples. (29

with the coupling constanta,=A(T-T,)+3%/(Q2+1?), A,
A. Varying the critical point =\—2ab/(Q%+1?), andb,=b?/(Q2+I?).
Now the mean-field prediction is as follows. Feg>0

two different phases exist; a spontaneously broken phase
whena, is negative and an unbroken phase whgls posi-

The driving fields transform the energy functioridlinto
a new energy functionali¢. This amounts to changing the

coupling constantég}— {get which in turn induces a change tive. These phases are separated by a line of second order

in the critical point. We will illustrate this with an example. o - - P :
Thg LG functional that describes the Ising model near théareagselggrr:]gvggg_eggielzg mgr;gc;lep?r:?égv Bﬁgs?g:il%igg (L o
critical temperature is pending on the value dd,. (i) If a.< )\§I4be then itis in a
symmetry broken phaséi) If \2/4b,<a,<\2/3b, then it
Hlo]= f (90(x)?+ A(T-TYe2(X) +Ne*(X). (24) is a metastable phase and will have a broken symmetry if one
X enters this region crossing the Iir7xé3=4aebe and will have
an unbroken symmetry if one enters by crossing the )liﬁle
The mean-field theory suggests a second order transition &32eDe. (iii ) If a,>\2/3b, then it is in the symmetric phase.
T. from a Z,-symmetry-broken phase to the symmetry- The line )\§:4aebe is a line of first-order transition which
unbroken phase and a dependence of magnetizédiater ~ €nds in the tricritical point.

parameteron temperature beloW, as{@)?=A(T,—T)/2A\. If _Suppose the system jnitially is in .the symmetric_ph.ase
we now drive this system, say, by oscillatigg term, which ~ With both &, and A, positive. Now switch on the periodic
is same as adding a force term force such that the produéb is positive and then gradually
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reduce the driving frequendy. This will reduce botta, and 4
\. and takes the system across the line of first-order transi- Her=H+v | 2 ¢a(¥), (32)
tion into the symmetry broken phase. More generally, by xa

tuning at most two of the three paramet@sb,Q} and the ~wherev=(Q?+I">), In the u-v plane this model has two
temperaturd we can scan the entig -\, plane. Hence, by more fixed points, Ising fixed point &i=0,v #0) and the
applying the driving fields we can engineer the behavior ofcubic fixed point at(u#0,v # 0), apart from the Gaussian
the system. and Heisenberg fixed points ati=0,0=0) and (u#0,v
=0), respectively. The stability of the fixed points is as fol-
C. Inducing new fixed points lows: The Gaussian point is unstable in #helirection too.

Driving fields can enlarge the coupling constant space O|=s_|ng point |s.stable n th? d|.rect|on bu_t unstaple n thE.'
direction. Heisenberg point is stable in thedirection if

the system by introducing either relevant or irrelevant fields : X . .
Y y g N<4 and unstable iN>4. Cubic point is stable in both

Though the irrelevant fields usually do not change the large-. , if Heisenb int i tabl d vi
distance properties of the system but in some cases, such ections 1T Heisenberg point 1S unstable and vice versa.

in the previous example, the coupling constant of the rel- us, whenN>4 these driving fields change the large-

evant fields can get shifted to a region where irrelevant fieldﬁ'zl'slt:)an.Ce delFl)eg'?S of tthe ﬁystt_e m frgml He!selr\llberg fo cubic.
become important. Let us now examine an example where eriodically driven stochastic models wi®(N) symme-

the driving fields introduce a relevant field and drasticallyry: Without them&ffp(x,t) in Eq.(2), were first studied in the
alter the large-distance properties. This is because the systefAntext of magnetic hysteredis3,14. The phase transitions
flows under scaling to a new stable fixed point in the enthat get induced by the driving fields in these models were

larged coupling constant space. The system under study [§cently investigated tog15]. These transitions were also
described by th©(N) model observed recently in Monte Carlo simulations of a driven

kinetic Ising model[16] and were subsequently analyzed
within a periodically driven TDLG mod€]l17].
H= JX (90())? + te*(x) + u(e*(x))?, (30 In summary, we have derived the effective theory for the
correlation functions of a class of periodically driven macro-
where o={¢1, ... ,¢\} is a N-component vector field. This scopic systems. We have shown with a few examples that
model has two fixed points: one is at0 (Gaussian fixed this effective theory can be made use to select the driving
point) and the other is at finitel (Heisenberg fixed point  fields that can steer the system through a plethora of phases.
For dimensiond<4 Heisenberg fixed point is stable while
Gaussian is not. Now drive the system by the fields

Fal@(x) = 2¢3(x)cos(Q), 31 , ,
al#(0)) = 2¢5(x)cos () 31 It is a pleasure to thank Mustansir Barma and Deepak
a=1,... N. The resultant model is th®(N) model with a  Dhar for helpful comments and useful discussions. This
cubic symmetry breaking terifi2] work was supported in toto by the people of India.
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