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We study the large-time behavior of a class of periodically driven macroscopic systems. We find, for a
certain range of the parameters of either the system or the driving fields, the time-averaged asymptotic behavior
effectively is that of certain other equilibrium systems. We then illustrate with a few examples how the
conventional knowledge of the equilibrium systems can be made use of in choosing the driving fields to
engineer new phases and to induce new phase transitions.
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I. INTRODUCTION

With enduring interest, studies have been pursued to un-
derstand systems with many degrees of freedom at, near, and
far away from equilibrium. Systems at equilibrium are stud-
ied within the well-established Boltzmann-Gibbs framework,
while those near and far from equilibrium lack such a frame-
work and are usually described by stochastic dynamical
equations. The stochastic equations that describe the dynam-
ics near equilibrium need to ensure that the system relaxes to
equilibrium and hence are less difficult to construct than
when the system is far away from equilibrium. However, this
condition that the asymptotic solution is the equilibrium dis-
tribution does not provide a unique stochastic equation. In
fact, for a given equilibrium system infinitely many such
equations near equilibrium can be provided that would lead
to the same static properties[1]. This naturally motivates the
study of various stochastic models.

We know that a closed system, characterized by the
HamiltonianH, when exposed to the environment for a long
time, will equilibriate and be described by the Boltzmann
distribution exps−bHd. If this system is also subjected to an
external periodic force then what is its large-time behavior?
The absence of an established framework to find this
asymptotic behavior and the fact that the equilibrium behav-
ior is describable by the asymptotic solution of certain sto-
chastic equations, makes it essential to study various periodi-
cally driven stochastic systems. It is also essential as some of
these systems show interesting behavior and some of them
furnish useful applications. Stochastic resonance[2] and
magnetic hysteresis[3] are some of the well known phenom-
ena that are exhibited by certain periodically driven stochas-
tic systems.

A large number of stochastic processes have been studied
for many decades now[4]. Studies in critical dynamics have
been actively pursued[5] after renormalization group tech-
niques were successfully applied to equilibrium systems[6].
Many driven diffusive models were studied[7] and the criti-
cal behavior of some of them were analyzed too[8,9]. Peri-
odically driven stochastic particle systems were extensively
studied in the context of stochastic resonance[2], while simi-
lar studies on fields were relatively few.

The issues that we address in this paper are related to a
class of periodically driven macroscopic systems that, in the

absence of driving, would relax to equilibrium. The relevant
degrees are described by a field and the equilibrium proper-
ties are characterized by an energy functional of the field.
These systems may or may not have a critical point when in
equilibrium but could exhibit a critical behavior when the
driving fields are switched on. How do these macroscopic
systems respond to periodically driven fields? How do we
describe the phases of the driven system? What is the depen-
dence of the critical points, if any, on the parameters of the
driving fields? Can driving change the nature of the phase
transitions? Can it lead to new phases?

The layout of the paper is as follows. In the next section,
we define a class of stochastic models to describe the rel-
evant fields of periodically driven systems. In Sec. III, we
develop a perturbative scheme to solve the Fokker-Planck
equation that describes the systems of our interest and ex-
plicitly find their asymptotic behavior to first order. In Sec.
IV, we illustrate with examples some of the effects of driving
on phases and phase transitions.

II. STOCHASTIC MODELS FOR PERIODICALLY DRIVEN
SYSTEMS

In this section, we will define a class of periodically
driven stochastic systems. We will assume the slowly relax-
ing modes of the system in the absence of the periodic forces
to be the relevant degrees of freedom and then model the
dynamics of these variables by modifying the stochastic
equations of these modes in the presence of the periodic
forces.

Let us first recollect how the dynamics near equilibrium is
described in the absence of driving. In this case the variables
of interest, those that relax very slowly, are the order param-
eter and the conserved quantities. This is a small set of vari-
ables which are some functions of the original degrees of
freedom. In principle, the dynamics of these relevant vari-
ables can be obtained from the equations of motion of the
original degrees, by integrating out the unwanted variables.
In practice, these dynamical equations for the relevant de-
grees are not thus established as they are not usually deriv-
able due to the large number of unwanted variables involved.
Hence these equations are based on certain guiding prin-
ciples [10]. (i) Foregoing a large number of unwanted vari-
ables renders a stochastic evolution to the relevant ones.(ii )
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These stochastic dynamical equations should be such that the
large-time distribution gives the right static thermodynamic
properties. This large-time distribution is the distribution ei-
ther obtained by integrating out the irrelevant variables from
the canonical equilibrium distribution or found on phenom-
enological grounds, e.g., Landau-Ginzburg(LG) theory near
critical point. Finally, the stochastic equations thus estab-
lished could explain the dynamic properties of the relevant
variables near equilibrium.

There exist many different families of stochastic equa-
tions that give the same static properties for the relevant
degrees. One of these is the following Langevin equation, the
time-dependent Landau-Ginzburg(TDLG) theory that de-
scribes the dynamics near equilibrium

G
]

]t
wsx,td = − UdHswd

dwsxd
U

wsxd→wsx,td
+ hsx,td, s1d

wherewsx,td is a sd+1d-dimensional stochastic field that re-
laxes to the order parameterwsxd of the system andHswd is
the LG free-energy functional;hsx,td is a Gaussian random
field with khsx,tdlh=0 and khsx,tdhsx8 ,t8dlh=2Gdsx
−x8ddst− t8d. If whsx,td is the solution of the above Langevin
equation then the probability distribution of this solution
Psw ,td=pxkd(wsxd−whsx,td)lh, evolves according to the
Fokker-Planck(FP) equation]tP=LP that is obtained from
Eq. (1) and the Gaussian distribution ofhsx,td. The formal
solution of this FP equation isPsw ,td=expsLtdPsw ,t=0d,
where Psw ,t=0d is the initial distribution. The asymptotic
distributionP`sw ,td=limt→`Psw ,td is the right eigenfunction
of the L operator with zero eigenvalue. This asymptotic
probability distribution is the LG measurePeqswd,exp(
−Hswd), provided (i) the eigenvalues ofL are negative
semidefinite,(ii ) there exists a unique normalizable eigen-
function corresponding to zero eigenvalue in the connected
space of functions to which the initial distribution belongs to,
and (iii ) the initial distribution is not orthogonal to this
eigenfunction.

The presence of driving fields on the system will alter
both its kinematics and dynamics. Assumptions about kine-
matics follow. (i) The set of variables that were relevant in
the absence of driving for the dynamics near equilibrium
continue to remain relevant upon introducing driving.(ii )
Some minimal set of additional variables might become rel-
evant too. We will consider a velocity fieldpsxd along with
the order parameter fieldwsxd to be relevant. The dynamical
variables of the system are then specified bywsx,td and its
time derivative]twsx,td. Assumptions about the dynamics
are as follows.(i) The Langevin equation, that describes dy-
namics near equilibrium in the absence of driving, gets
modified by adding terms related to the periodically driven
fields and by adding a second-order time-derivate term
]t

2wsx,td whose effect is significant when the driving fre-
quency is high.(ii ) The periodic driving does not change the
properties of the noise field for any frequency of the driving
fields.

The modified TDLG theory that describes the system
when subjected to driving is then given by the following
stochastic equation:

m
]2

]t2
wsx,td = − G

]

]t
wsx,td −

dHswd
dwsx,td

+ F„wsx,td,t… + hsx,td,

s2d

whereF(wsxd ,t) is the driving field that is periodic in time
with periodT=2p /V. The general form of this field is

F„wsxd,t… = o
n=1

`

fFn„wsxd…cossnVtd + Gn„wsxd…sinsnVtdg,

s3d

whereFn andGn are arbitrary local functionals ofwsxd. This
term could be thought of as a result of making the coupling
constants inHswd time dependent and periodic. We will take
m=1 so that the expressions look simple and to regain them
dependence back replacet→ t /Îm, G→G /Îm, and V
→ÎmV. The distribution of the noise field is Gaussian as
specified earlier.

The above dynamical equation for as0+1d-dimensional
stochastic field describes periodically driven Brownian par-
ticle. These Brownian particles exhibit a variety of interest-
ing asymptotic behavior depending on the driving forces
[11]: The particles when driven could congregate around
more than one point even though when in equilibrium they
would have congregated around a single point. Particles with
different masses respond to driving differently and thus when
they are mixed and driven would cluster around different
points.

The phase space probability distribution is defined as
Psw ,p ,td=kpxd(wsxd−whsx,td)d(psxd−]twhsx,td)lh, where
whsx,td is the solution of Eq.(2) at time t for a particular
history ofhhsx,tdj over a timet andk¯lh is the average over
the noise distribution. This distribution satisfies the normal-
ization conditioneDfw ,pgPsw ,p ,td=1. The time evolution
of Psw ,p ,td is described by the FP equation

]

]t
Psw,p,td = LstdPsw,p,td, s4d

where

Lstd =E
x
F−

d

dw
p −

d

dp
S− Gp −

dH
dw

+ Fsw,tdD + G
d2

dp2G
= LFP−E

x

d

dp
Fsw,td. s5d

The FP operatorLFP is defined as the time-independent part
of the Lstd operator, both of which are assumed to be suit-
ably regularized. To keep the notation compact,w=wsxd and
p=psxd are used in the above equation. The solution of this
equation is not known in general and our aim is to find the
asymptotic solution for some range of parameters of the sys-
tem and driving fields.
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The asymptotic distribution of the above FP equation is a
periodic function with periodT, if the real part of the eigen-
values of]t−Lstd are positive semidefinite. In brief, the ar-
gument for the periodicity goes as follows. The solution of
the FP equation is the right eigenfunction of the operator]t
−Lstd corresponding to the zero eigenvalue. IfLstd=Lst
+Td then ]t−Lstd commutes with the discrete time-
translation operator expsT]td. The solution can then be ex-
panded in terms of the common right eigenfunctions of these
two operators. Let the eigenfunctions of]t−Lstd and
expsT]td with eigenvalues 0 and expsmTd, respectively, be
the Floquet-type functions expsmtdpmstd, wherepmstd is a pe-
riodic function with periodT. Substituting these eigenfunc-
tions in FP equation givesf]t−Lstdgpmstd=−mpmstd. Hence,
if the real part of the eigenvalues of]t−Lstd are positive
definite then in the limitt→` the only eigenfunction that
survives isp0std, thus making the asymptotic distribution pe-
riodic.

When the coupling constantshg̃j of the driving field
Fsw ,td are small compared to the coupling constantshgj of
Hswd then the FP equation can be solved perturbative inhg̃j
provided we know the right and left eigenfunctions of the FP
operator LFP. These eigenfunctions are generically not
known though the eigenfunctions of the FP operator which
includes only the free part ofHswd are obtainable. Hence,
the eigenfunctions ofLFP can be determined perturbatively
in hgj and in turn the solution of the FP equation in the
double series expansion inhgj and hg̃j. We will now further
to find the asymptotic behavior of the FP equation whenhg̃j
are not necessarily small compared tohgj.

III. ASYMPTOTIC DISTRIBUTION OF THE FP
EQUATION

In this section, we will first transform the FP equation to
enable us to have a non-perturbative solution inhg̃j but per-
turbative in a parameter that involves bothhg̃j and V2+G2.
We then explicitly evaluate the asymptotic distribution to
first order in this parameter and more specifically the time-
averaged asymptotic correlation functions. We find that these
correlation functions can be expressed as equilibrium corre-
lation functions with an effective LG energy functional.

A. Formal solution

We will make a change of variables and transform the FP
equation such that the time-dependent part of the trans-
formed FP operator is small though the time-dependent part
of the original FP equation is not. The variableshw ,p ,tj are
changed tohF ,P ,tj by the following nonlinear transforma-
tion:

wsxd = Fsxd + jsx;F,td,

psxd = Psxd + ]tjsx;F,td,

t = t, s6d

where the explicit form ofjsx;F ,td will be specified later.
Under this transformation the probability distribution is

made to behave as a scalar:Psw ,p ,td→ P̃sF ,P ,td
=Psw ,p ,td. The functional derivatives will then transform as

d

dpsxd
=

d

dPsxd
,

d

dwsxd
=E

y
Dsx,ydS d

dFsyd
−E

z
]tMsy,zd

d

dPszdD , s7d

and the time derivative as

]

]t
=

]

]t
−E

x
]t

2jsx;F,td
d

dPsxd
−E

x
]tjsx;F,td

d

dwsxd
,

s8d

where

Msx,yd =
d

dFsxd
jsy;F,td, E

y
Dsx,yd

dwszd
dFsyd

= dsx − zd.

s9d

Substituting the above new variables in Eq.(4) we obtain the
following transformed FP equation:

]P̃

]t
=E

x
F−

d

dF
P −

d

dP
„− GP + fHsF + jd + DFsj,td…

+ G
d2

dP2GP̃ +E
x,y

PsxdFhdsx − yd − Dsx,ydj d

dFsyd

+ Dsx,ydE
z
]tMsy,zd

d

dPszdGP̃ +E
x
Fs]t

2j + G]tj

− FsF,tdd d

dPsxdGP̃, s10d

where fH(wsxd)=−dH /dwsxd and DFsj ,td=FsF+j ,td
−FsF ,td. We now choosejsx;F ,td to be the solution of the
following equation:

]t
2j + G]tj − FsF,td = 0, s11d

whose explicit form is

jsx;F,td = o
n=1

`
− 1

n2V2 + G2FSFn„Fsxd…

+
G

nV
Gn„Fsxd…DcossnVtd + SGn„Fsxd…

−
G

nV
Fn„Fsxd…DsinsnVtdG . s12d

The reason for this specific choice forj is that not only does
it make the last term on the right-hand side of Eq.(10) zero
but also makes the(time)t-dependent part of the modified FP
operator to be ofOsjd. Thus if j is small then this modified
equation will yield a perturbative solution. Upon substituting
j from Eq. (12) in Eq. (10) we finally get
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]

]t
P̃sF,P,td = fL + DLgP̃sF,P,td, s13d

whereL is the following static FP operator:

L =E
x
F−

d

dF
P −

d

dP
„− GP + fHsF + jd + DFsj,td…

+ G
d2

dP2G , s14d

andDL is the periodicstimedt-dependent operator

DL =E
x
F−

d

dP
„fHsF + jd − fHsF + jd + DFsj,td

− DFsj,td…G +E
x,y

PsxdFhdsx − yd − Dsx,ydj
d

dFsyd

+ Dsx,ydE
z
]tMsy,zd

d

dPszdG , s15d

where the overbars indicate an average over a time period.
The perturbative asymptotic solution can be formally

written as

P̃`sF,P,td = QsF,Pd +
1

]t − LDLP̃`sF,P,td, s16d

where QsF ,Pd is the right eigenfunction ofL with zero
eigenvalue. IfL has a unique eigenfunction corresponding to
zero eigenvalue, and the real part of the nonzero eigenvalues

do not vanish, andP̃` is periodic in time, then it follows

from Eq. (13) thatDLP̃` has no overlap with the eigenfunc-
tion of ]t−L corresponding to zero eigenvalue. Thus, though
]t−L is not invertible, its inverse action on the space or-
thogonal to its eigenfunction with zero eigenvalue is well
defined.

B. Effective theory

In this subsection, we will obtain the effective energy
functional toOsjd by averaging the asymptotic correlation
functions over a time period. The observables will be related
to the time-averaged correlation functions if the time of ob-
servation is comparable to the time period of the driving
fields. In other words, we are assuming that the driving fields
oscillate rapidly compared to the time scale of the measure-
ment.

The equal-time correlation functions of the stochastic
field transform under the change of variables as

kwsx1,tdwsx2,td ¯ lh =E Dfp,wgwsx1dwsx2d ¯ Psw,p,td

=E DfP,FgJfFghFsx1d + jsx1;F,tdj

3hFsx2d + jsx2;F,tdj ¯ P̃sF,P,td,

s17d

where the integration measureDfp ,wg=Pxfdpsxddwsxdg and
the Jacobian of the transformationJfFg=Pxf1
+]j(x,Fsxd ,t) /]Fsxdg. The first-order asymptotic distribu-

tion, obtained from Eq.(16), is P̃`=Qs1d+s]t−Ld−1DLQs0d,
where Qs0d and Qs1d are the solutions of the equationLQ

=0 to Os1d and Osjd, respectively. SubstitutingP̃` in Eq.
(17) and averaging over a period gives

E Dfp,wgwsx1dwsx2d ¯ P`fw,p,tg

=E DfP,FgFsx1dFsx2d ¯ Qs1dsF,Pd + Osj2d,

s18d

since the time average of bothj and fs]t−Ld−1DLQs0dg are
zero. From Eq.(14), in which fHsF+jd and DFsj ,td are
expanded toOsjd, we get

Qs1dsF,Pd =
1

Zs1dexpS−
1

2
E

x
P2sxd − HsFd − DHsFdD ,

s19d

whereZs1d is the normalization constant andDHsFd satisfies
the condition

d

dFsxd
DHsFd = − jsx;F,td

]

]Fsxd
F„Fsxd,t…. s20d

Substitutingj and F from Eqs. (12) and (3) in the above
equation we getDH=DH1+DH2, where

DH1sFd =
1

4o
n=1

`
1

n2V2 + G2E
x

fFn
2
„Fsxd… + Gn

2
„Fsxd…g,

DH2sFd = o
n=1

`
G

sn2V2 + G2ds2nVdEx
WfFn„Fsxd…,Gn„Fsxd…g.

s21d

WfFn(Fsxd) ,Gn(Fsxd)g is defined by the indefinite integral
WfFsad ,Gsadg=edafGsadF8sad−FsadG8sadg. After inte-
grating outP in Eq. (18), we finally get

lim
t→`

kwsx1,tdwsx2,td ¯ lh

=
1

Z
E Dfwsxdgwsx1dwsx2d ¯ e−Heffswd, s22d

whereZ=eDw exps−Heffd andHeffswd=Hswd+DHswd. The
effective energy functional for aN-component order param-
eter fieldw;hwaj is a straightforward generalization of Eqs.
(20) and (21). In this caseDH, which satisfies Eq.(20) for
each component, exists only if the components of the driving
field Fn

a andGn
a satisfy the conditions]Fn

a/]wb=]Fn
b/]wa and

]Gn
a/]wb=]Gn

b/]wa.
Note that we have neglectedOsj2d terms in the expansion

of theL andDL operators becausej is assumed to be small.
The condition for the smallness ofj and the criteria for the
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validity of Osjd approximation are both obtained by compar-
ing the neglected terms with those that are retained in these
operators. For instance, ifF=2g̃w2sxdcossVtd and the coef-
ficient of w4 term in Hswd is l then j is small if l
@ g̃2/ sV2+G2d. A self-consistent criteria can also be obtained
by comparing the expectation values of the neglected and the
retained terms usingHeff. In some cases the higher powers of
j contribute only irrelevant terms toHeff and hence can be
neglected while determining universal properties, indepen-
dent ofj being small. For instance, ifF= g̃w4sxdcossVtd and
H is a w4 theory in four dimensions, then theOsjd term in
Heff itself is an irrelevantw8 field and the higher-order terms
contain fields that are more irrelevant.

The effective energy functionalHeff can be interpreted as
follows. The asymptotic distribution contains both statistical
fluctuationsF and the dynamical fluctuationsjsF ,td that are
periodic in time. In Eq.(20), if we substituteF in terms ofj
by using Eq.(11) and then integrate by parts, we get

d

dF
DHsFd =

]

]F

1

2
s]tjd2 + G]tj

]

]F
j. s23d

Thus, by averaging over the time period we have eliminated
the dynamical fluctuations and provided an effective descrip-
tion to the system in terms of the statistical fluctuations that
are governed by a modified energy functionalHeff=H
+DH.

IV. ILLUSTRATIVE EXAMPLES

We have seen that the large-time behavior of periodically
driven stochastic systems, averaged over a period, can be
described by an effective LG functional of equilibrium sys-
tems. We can now make use of the knowledge about these
equilibrium systems to induce new phases and phase transi-
tions in various systems by subjecting them to time-
dependent periodic fields. We illustrate some of the effects
due to these driving fields with a few examples.

A. Varying the critical point

The driving fields transform the energy functionalH into
a new energy functionalHeff. This amounts to changing the
coupling constantshgj→ hgej which in turn induces a change
in the critical point. We will illustrate this with an example.
The LG functional that describes the Ising model near the
critical temperature is

Hfwg =E
x
„]wsxd…2 + AsT − Tcdw2sxd + lw4sxd. s24d

The mean-field theory suggests a second order transition at
Tc from a Z2-symmetry-broken phase to the symmetry-
unbroken phase and a dependence of magnetization(order
parameter) on temperature belowTc askwl2=AsTc−Td /2l. If
we now drive this system, say, by oscillatingw2 term, which
is same as adding a force term

F„wsxd… = 2ãwsxdcossVtd, s25d

then this system will get described by the following effective
energy functional that is obtained using Eq.(21)

Hefffwg =E
x
„]wsxd…2 + aew

2sxd + lw4sxd, s26d

where ae=AsT−Tcd+ ã2/ sV2+G2d. Since this effective en-
ergy functional differs from the original functional only in
the coefficient of thew2 term one can read off the critical
temperatureuc and the behavior of the time-averaged mag-
netizationkwl below uc of the driven system. We get

uc = Tc −
ã2

AsV2 + G2d
,

kwl2 =
A

2l
suc − Td. s27d

Hence, the driving field acting on this system tends to de-
stroy the symmetric phase as it reduces both the critical tem-
perature and the magnetization at a given temperature.

B. Changing the nature of transition

The nature of phase transition can also be changed by
applying driving fields. Consider the LG functional as given
in the previous example, Eq.(24), but with a different driv-
ing force

F„wsxd… = 2„āwsxd − b̄w3sxd…cossVtd, s28d

and also assume the dimension of spaced.3 wherew6 term
is irrelevant. The effective energy functional will then be-
come

Hefffwg =E
x
„]wsxd…2 + aew

2sxd + lew
4sxd + bew

6sxd,

s29d

with the coupling constantsae=AsT−Tcd+ ã2/ sV2+G2d, le

=l−2ãb̃/ sV2+G2d, andbe= b̃2/ sV2+G2d.
Now the mean-field prediction is as follows. Forle.0

two different phases exist; a spontaneously broken phase
whenae is negative and an unbroken phase whenae is posi-
tive. These phases are separated by a line of second order
transition which ends in a tricritical point when bothle and
ae become zero. Forle,0 there are three possibilities de-
pending on the value ofae. (i) If ae,le

2/4be then it is in a
symmetry broken phase.(ii ) If le

2/4be,ae,le
2/3be then it

is a metastable phase and will have a broken symmetry if one
enters this region crossing the linele

2=4aebe and will have
an unbroken symmetry if one enters by crossing the linele

2

=3aebe. (iii ) If ae.le
2/3be then it is in the symmetric phase.

The line le
2=4aebe is a line of first-order transition which

ends in the tricritical point.
Suppose the system initially is in the symmetric phase

with both ae and le positive. Now switch on the periodic

force such that the productãb̃ is positive and then gradually
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reduce the driving frequencyV. This will reduce bothae and
le and takes the system across the line of first-order transi-
tion into the symmetry broken phase. More generally, by

tuning at most two of the three parametershã,b̃,Vj and the
temperatureT we can scan the entireae−le plane. Hence, by
applying the driving fields we can engineer the behavior of
the system.

C. Inducing new fixed points

Driving fields can enlarge the coupling constant space of
the system by introducing either relevant or irrelevant fields.
Though the irrelevant fields usually do not change the large-
distance properties of the system but in some cases, such as
in the previous example, the coupling constant of the rel-
evant fields can get shifted to a region where irrelevant fields
become important. Let us now examine an example where
the driving fields introduce a relevant field and drastically
alter the large-distance properties. This is because the system
flows under scaling to a new stable fixed point in the en-
larged coupling constant space. The system under study is
described by theOsNd model

H =E
x
„]wsxd…2 + tw2sxd + u„w2sxd…2, s30d

wherew;hw1, . . . ,wNj is a N-component vector field. This
model has two fixed points: one is atu=0 (Gaussian fixed
point) and the other is at finiteu (Heisenberg fixed point).
For dimensiond,4 Heisenberg fixed point is stable while
Gaussian is not. Now drive the system by the fields

Fa„wsxd… = 2wa
2sxdcossVtd, s31d

a=1, . . . ,N. The resultant model is theOsNd model with a
cubic symmetry breaking term[12]

Heff = H + vE
x
o
a

wa
4sxd, s32d

wherev=sV2+G2d−1. In the u−v plane this model has two
more fixed points, Ising fixed point atsu=0,vÞ0d and the
cubic fixed point atsuÞ0,vÞ0d, apart from the Gaussian
and Heisenberg fixed points atsu=0,v=0d and suÞ0,v
=0d, respectively. The stability of the fixed points is as fol-
lows: The Gaussian point is unstable in thev direction too.
Ising point is stable in thev direction but unstable in theu
direction. Heisenberg point is stable in thev direction if
N,4 and unstable ifN.4. Cubic point is stable in both
directions if Heisenberg point is unstable and vice versa.
Thus, whenN.4 these driving fields change the large-
distance properties of the system from Heisenberg to cubic.

Periodically driven stochastic models withOsNd symme-
try, without them]t

2wsx,td in Eq. (2), were first studied in the
context of magnetic hysteresis[13,14]. The phase transitions
that get induced by the driving fields in these models were
recently investigated too[15]. These transitions were also
observed recently in Monte Carlo simulations of a driven
kinetic Ising model[16] and were subsequently analyzed
within a periodically driven TDLG model[17].

In summary, we have derived the effective theory for the
correlation functions of a class of periodically driven macro-
scopic systems. We have shown with a few examples that
this effective theory can be made use to select the driving
fields that can steer the system through a plethora of phases.
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